
Chapter 7

Radiation damage

The structural materials of nuclear power plants interact with various radiations.
The most interesting of these is the interaction with neutrons because of the remark-
able degradation of the mechanical properties of the material, commonly known as
“neutron irradiation embrittlement”.

7.1 Neutron-Nucleus interaction

7.1.1 Elastic scattering

Because neutrons are electrically neutral, they do not react well with electrons. The
main reaction between neutrons and atoms begins when the neutron collides with
the nucleus of an atom. If the energy of the incident neutron is Ei, and the energy
of the neutron after collision with the nucleus is Ef , when Ω is defined as the solid
angle at the time of collision, the collision probability is

σs(Ei,Ω) =

∫
σs(Ei, Ef ,Ω)dEf

The total scattering probability for neutrons of energy Ed is

σs(Ei) =

∫
σs(Ei,Ω)dΩ

Materials interact with various radiations. However, the content is vast and diffi-
cult to cover all in one semester. So boldly, in this lesson, we will only consider
interactions with neutrons. There are mainly lab frame and center of mass frame to
describe collision. The two frames do not conflict with each other and give the same
result. But it’s a matter of convenience. I think many of you have studied Reactor
theory class. Here, I will simply write the results. If the mass of the neutron 1 is
the mass of the nucleus is A, applying momentum balance

vc − VcA = 0 (7.1)

v′c − V ′
cA = 0

By energy balance,
1

2
v2c +

A
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V 2
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Figure 7.1: Lab frame and center of mass frame

Combined energy conservation, we have

vc = v′c

Vc = V ′
c

which is the virtue of center of mass frame. Before collision, target nucleus at rest
at laboratory frame and moves left direction in Fig. 7.1 with speed Vc in center of
mass system. The relative velocity is

vc = vl − VCM = vl − Vc

Plug into Eq. 7.1,

VCM =

(
1

A+ 1

)
vl (7.2)

Apply cosine law to diagram in Fig. 7.1,

V ′2
l = V 2

CM + V ′2
c − 2VCMV ′

c cosϕ

With the energy T transferred to the nucleus by the irradiated neutron,

V ′2
l =

2T

A
V 2
CM = 2Ei

(
1

A+ 1

)2

V ′2
c =

2

A2
E′

n

Finally, we reach

T = η1η2Ei +
η1
η2

E′
n − 2η1

√
EiE′

n cosϕ (7.3)

where

η1 =
1

A+ 1
η2 =

A

A+ 1

E′
n is given by

E′
n = η22Ei (7.4)

By further handling,

T =
γ

2
Ei(1− cosϕ) (7.5)
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1MeV n on C γ = 0.28 T = 0.14MeV
1MeV n on Fe γ = 0.069 T = 0.035MeV
1MeV n on U γ = 0.017 T = 0.009MeV

where

γ =
4A

(A+ 1)2

and ϕ is the scattering angle. Within range 0 ≤ ϕ ≤ π, as ϕ increases, T increases
accordingly. By definition of solid angle,

dΩ =
dA

r2
=

rdϕ(2πr sinϕ)

r2
= 2π sinϕdϕ

Since the scattering probability is also function of T or ϕ, we can write down

σs(Ei, T )dT = σs(Ei, ϕ)dΩ = 2πσs(Ei, ϕ) sinϕdϕ (7.6)

From Eq. 7.5,

dT =
γ

2
Ei sinϕdϕ (7.7)

we also have

σs(Ei, T ) =
4π

γEi
σs(Ei, ϕ) (7.8)

Since

σs(Ei) =

∫
σs(Ei, ϕ)dΩ = 2π

∫
σs(Ei, ϕ) sinϕdϕ

When scattering is isotropic, we can write

σs(Ei) = 4πσs(Ei, ϕ)

With Eq. 7.8,

σs(Ei, T ) =
σs(Ei)

γEi

which does not depend on T . The average recoil energy is

T =

∫ T̂

T̆
Tσs(Ei, T )dT∫ T̂

T̆
σs(Ei, T )dT

=
T̂ + T̆

2
≃ T̂

2
=

γEi

2
(7.9)

7.2 The displacement of Atoms

The struck lattice atom energy T is referred to as a primary knock-on atom (PKA).
An atom that collides with a neutron moves out of its place and collides with its
neighboring atoms, causing consequent further escape. This large-scale additional
displacement of neighboring atoms is called a collision cascade.
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Figure 7.2: Illustration of Kinchin-Pease model

7.2.1 Kinchin-Pease(K-P) model

By Eq. 7.9, assume that the average kinetic energy of the atoms is halved with
each collision. (Assuming collisions between atoms of the same mass) The figure
proposed by Kinchin and Pease is shown in Fig. 7.2. The details of Kinchin-Pease
model is when initial PKA

E > 2Ed

1. PKA causes further atomic displacements.

2. After the first collision, the number of displaced atoms is 2, their average
energy

T 1 =
E

2

3. After the second collision, four atoms are involved.

T 2 =
E

4

4. In general, after n collisions, 2n atoms are involved and

Tn =
E

2n

5. The termination condition is
Tn ≤ 2Ed

6. When
Ed < Tn < 2Ed

PKA can transfer enough energy to displace an atom, but the displaced atom
is replaced by the PKA, so no new defects are produced.

7. nf is final number of collisions

2Ed =
E

2nf

Number of displacements when the projectile energy is Ei

ν(Ei) = ν(Ei − T )︸ ︷︷ ︸
Recoil

+ ν(T )︸︷︷︸
Struck atom

(7.10)
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The energy transfer cross section when γ = 1 is

σs(Ei, T ) =
σs(Ei)

Ei

The probability that a PKA of energy Ei transfers energy in the range (T, T + dT )
is

σs(Ei, T )dT

σs(Ei)
=

dT

Ei

With Eq. 7.10,

ν(Ei) =
1

Ei

∫ Ei

0

[
ν(Ei − T ) + ν(T )

]
dT

=
1

Ei

[ ∫ Ei

0

ν(Ei − T )dT +

∫ Ei

0

ν(T )dT

]
Let

X = Ei − T

Then

ν(Ei) =
1

Ei

[ ∫ Ei

0

ν(X)dX +

∫ Ei

0

ν(T )dT

]
=

2

Ei

∫ Ei

0

ν(T )dT

We can easily know that

ν(Ei) = 0 for 0 < Ei < Ed

ν(Ei) = 1 for Ed ≤ Ei < 2Ed

Therefore, the integration can be partitioned by

ν(Ei) =
2

Ei

[ ∫ Ed

0

0dT +

∫ 2Ed

Ed

1dT +

∫ Ei

2Ed

ν(T )dT

]
yielding

ν(Ei) =
2Ed

Ei
+

2

Ei

∫ Ei

2Ed

ν(T )dT Ei > 2Ed (7.11)

Multiplying Ei and take derivative with respect to Ei we have

Ei
dν(Ei)

dEi
= ν(Ei)

The solution of ODE is
ν(Ei) = CEi

Put it back to Eq. 7.11, we can determine C

ν(Ei) =
Ei

2Ed

Another upper limit also presents Ec which does not increase displacement atoms
any longer. In sum,

ν(Ei) =


0 for Ei < Ed

1 for Ed ≤ Ei < 2Ed

Ei

2Ed
for 2Ed ≤ Ei < Ec

Ec

2Ed
for Ei ≥ Ec
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7.3 Displacement rates

The displacement rate is

Rd =

∫ Ê

Ĕ

Nϕ(Ei)σd(Ei)dEi (7.12)

The unit of Rd is displacements/m3 · s and unit of N is atoms/m3. σi(Ei) is the
displacement cross section. Neglecting inelastic scattering and assume all scattering
is isotropic,

σd(Ei) =
σs(Ei)

γEi

∫ γEd

Ei

ν(Ei)dEi

If γEd > Ec with Kinchin-Pease model,

σd(Ei) =
σs(Ei)

γEi

[ ∫ 2Ed

Ed

dEi +

∫ Ec

2Ed

Ei

2Ed
dEi +

∫ γEi

Ec

Ec

2Ed
dEi

]
=

σs(Ei)

2γEiEd

[
γEiEc −

E2
c

2

]
When γEi ∼ Ec

σd(Ei) ≃
(
γEi

4Ed

)
σs(Ei)

Eq. 7.12 becomes

Rd =
Nγ

4Ed

∫ ∞

Ed/γ

σs(Ei)Eiϕ(Ei)dEi

= Nσs

(
γEi

4Ed

)
ϕ

where Ei is an average neutron energy and ϕ is the total neutron flux above energy
Ed/γ, and the term in brackets is the number of displacements (Frenkel pairs)
produced per neutron.

For example, 0.5MeV neutrons in Fe in a fast flux,

N = 0.85× 1023 atoms/cm3 σs = 3× 10−24cm2

ϕ = 1015neutrons/cm−2s−1 γEi

4Ed
= 350 displaced atoms/neutron

then
Rd = 9× 1016displaced atoms/cm3 · s

or
Rd

N
= 10−6dpa/s

or
Rd

N
= 32dpa/year
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7.4 Rate theory

When neutrons are irradiated into the solid, the atom hit by the neutron sometimes
leaves its own site (PKA, self-interstitial atom), and the original site becomes empty
(vacancy). These (self) interstitial and vacancy are called point defects in the solid,
and interstitial and vacancy are collectively called Frenkel defect.

These Frenkel pairs cause collective chaos of millions of atoms around the neutron-
irradiated region, which is called a cascade. Numerous Frenkel defects are formed
here, and the formed defects interact with each other. However, of course, although
it depends on the irradiated neutron energy and flux and the properties of the ma-
terial, the natural always tends to find its equilibrium state, and after several tens
of ps, most of the Frenkel pairs disappear. Atoms that leave the original site return
to where they should be. However, very few of them cannot find their home and
become ’defect’ or ’damage’.

Let’s discuss the situation after Cascade a little more deeply.

7.4.1 Damage after the cascade

There are largely four main processes after the cascade, in terms of defect.

1. Production

2. Recombination

3. Absorption at sinks

4. Migration

As with all balances in the world, the point defect (vacancy, interstitial) balance
based on the Fick’s 2nd law is given by the Eqs. 7.13 and 7.14.

dCv(r, t)

dt
= ∇ ·Dv∇Cv +Gv − Lv (7.13)

dCi(r, t)

dt
= ∇ ·Di∇Ci +Gi − Li (7.14)

where Cv and Ci are concentrations of vacancy and interstitial and Gv and Lv are
gain and loss rate of vacancies and Gi and Li are gain and loss rate of interstitials.
The possible gain terms of the defects are

1. Displacement production

2. Reaction production

The possible loss terms are

1. Recombination

2. Loss to sinks. The possible sinks are

(a) Dislocations

(b) Cavity

(c) etc.
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For simplicity, we do not consider grain of defects by reaction production in this
lecture. We assume that defect production is function of neutron flux and it is
constant during the irradiation, K0.

Now, we take care about recombination term, a sort of defect loss, which means
defect annihilation by interaction of vacancies and interstitials.

dCv(r, t)

dt

∣∣∣∣
recombination

=
dCi(r, t)

dt

∣∣∣∣
recombination

= −KivCvCi

Another loss term by sinks, we have to estimate sink strengths depending on the
type of sinks.

dCv(r, t)

dt

∣∣∣∣
sink

= −k2vDvCv

dCi(r, t)

dt

∣∣∣∣
sink

= −k2iDiCi

We consider two sinks, cavity and dislocations,

k2v = zvρd + 4πrcNc (7.15)

k2i = ziρd + 4πrcNc (7.16)

where rc and Nc are cavity radius and number density of cavities, and ρd is disloca-
tion density and zv and zi are bias factor for vacancies and interstitials. Eqs. 7.13
and 7.14 becomes

dCv(r, t)

dt
= ∇ ·Dv∇Cv +K0 −KivCvCi − k2vDvCv (7.17)

dCi(r, t)

dt
= ∇ ·Di∇Ci +K0 −KivCvCi − k2iDiCi (7.18)

where

Kiv =
Zivν(Di +Dv)

λ2
≃ ZivνDi

λ2

and λ is jumping distance and Ziv is the recombination number. For simplicity, we
neglect the spatial distribution of defect at this moment. Therefore,

dCv(t)

dt
= K0 −KivCvCi − k2vDvCv (7.19)

dCi(t)

dt
= K0 −KivCvCi − k2iDiCi (7.20)

Under steady state, since

dCi(t)

dt
= 0

dCv(t)

dt
= 0

Eq. 7.20 becomes
K0 −KivCvCi − k2iDiCi = 0

Therefore,

Ci =
K0

KivCv + k2iDi

Eq. 7.19 becomes

C2
v +

k2i
Kiv

DiCv −
K0k

2
iDi

Kivk2vDv
= 0
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The solution is

Cv =
k2iDi

2Kiv

(√
1 + ξ − 1

)
(7.21)

Ci =
k2vDv

2Kiv

(√
1 + ξ − 1

)
(7.22)

where

ξ =
4K0Kiv

k2i k
2
vDiDv

(7.23)

When
Kiv ≫ k2i k

2
vDiDv

recombination is dominant,

ξ ≫ 1→
√

1 + ξ − 1 ≃
√
ξ

therefore,

Cv ≃
k2iDi

Kiv

√
ξ =

√
k2iDiK0

k2vDvKiv

Ci ≃
k2vDv

Kiv

√
ξ =

√
k2vDvK0

k2iDiKiv

When
Kiv ≪ k2i k

2
vDiDv

sink(annihilation) is dominant,

ξ ≪ 1→
√
1 + ξ − 1 ≃ ξ

2

therefore,

Cv ≃
k2iDi

2Kiv

ξ

2
=

K0

k2vDv

Ci ≃
k2vDv

2Kiv

ξ

2
=

K0

k2iDi

7.4.2 Transient solutions - Recombination dominant

The transient solution is mainly derived by R. Sizmann. Reference: Sizmann,
Rudolf. ”The effect of radiation upon diffusion in metals.” Journal of Nuclear Ma-
terials 69 (1978): 386-412.

Usually, at low temperature, recombination is more dominant than sink because,
defects have to diffuse to interact with sink sources and as temperature decreases,
diffusivity of the defects decreases significantly as well.

Stage 1

At the beginning, point defects are created and not much enough to interacts each
other. During the stage, we can evaluate

Cv = Ci = K0t
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When recombination is dominant, one can assume that defect generation rate is
balanced by recombination rate, that is

K0 = KivCiCv

Since
C = Ci = Cv

C = KivC
2t1 → t1 =

(
1

K0Kiv

)1/2

After t1, since the production and recombination is balanced,

Ci = Cv = K0t1 =

(
K0

Kiv

)1/2

for a while.

Stage 2

Now, after some time, defects start arriving at the defect sinks. From now on, it
corresponds to the sink dominant regime. Since the diffusivity of interstitial is much
bigger than that of vacancy, we assume that interstitial arrive at sinks first.

dCi(t)

dt
= (−k2iDi)Ci

The characteristic time for the process is

t2 =
1

k2iDi

At t = t2,

CiCv =
K0

Kiv

and
Ci = Cv

Since concentration of interstitial decreases, recombination rate decreases, therefore,
vacancy concentration increases at this regime. Therefore,

Cv(t) =

[
K0(k

2
iDi)t

Kiv

]1/2
(7.24)

where

Cv(t2) =

[
K0

Kiv

]1/2
Consequently,

Ci(t) =

[
K0

Kiv(k2iDi)t

]1/2
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Figure 7.3: Defect concentrations as function of time in a recombination dominated
regime.

Stage 3

After for a while, vacancies start arriving at the sinks. The characteristic time is

t3 =
1

k2vDv

Put it to Eq. 7.24,

Cv =

[
K0k

2
iDi

Kivk2vDv

]1/2
Consistently,

Ci =

[
K0k

2
vDv

Kivk2iDi

]1/2
The defect concentrations in recombination dominated regime is plotted in Fig. 7.3.

7.4.3 Transient solutions - Sink dominant

Stage 1

At the beginning, point defects are created and buildup.

Cv = Ci = K0t

After than, the sink is dominant rather than recombination, the characteristic time
for interstitial sink is

t2 =
1

k2iDi

come first. Then

Ci =
K0

k2iDi

After than, the vacancy start to arrive at sinks and their characteristic time is

t3 =
1

k2vDv
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Figure 7.4: Defect concentrations as function of time in a sink dominated regime.

then

Cv =
K0

k2vDv

Typical case: T = 298K neutron is irradiated to bcc Fe (lattice parameter is
0.28 nm). The dislocation density is 108cm2. The vacancy and interstitial migration
energies are 1.5 eV and 0.65 eV. The recombination number is 200 and displacement
rate is 10−7dpa/s. The vibration frequency is 1013s−1. Consider only sink by
dislocation and zi = 1.02 and zv = 1. We can evaluate

Di =
8

6
×(2.44×10−8)2×1013×exp

(
− 0.65

8.62× 10−5 × 298

)
= 8.134×10−14cm2/s

Dv =
8

6
×(2.44×10−8)2×1013×exp

(
− 1.5

8.62× 10−5 × 298

)
= 3.464×10−28cm2/s

with jump distance √
3

2
a0 = 0.244 nm

The recombination rate constant is

Kiv = 200× 1013 × exp

(
− 0.65

8.62× 10−5 × 298

)
= 2.0× 104

Then

t1 =
1√

K0Kiv

= 22.4 s

Since
k2i = zdρi = 1.02× 108

therefore,

t2 =
1

k2iDi
=

1

1.02× 108 × 8.134× 10−14
= 1.21× 105s = 33.5 h

Since
k2v = zvρi = 1× 108
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therefore,

t3 =
1

k2vDv
=

1

1× 108 × 3.464× 10−28
= 2.89× 1019s = 33.5 h = 9.15× 1011years


