
Chapter 3

Dislocation

3.1 Shear stress and slip

If tensile stress is continuously applied to the metal specimen, the average distance
between the metal atoms continues to increase, and at some point, the metal under-
goes plastic deformation. The stress level for this point is the yield strength. In the
case of a typical metal, the yield stress is about several hundreds MPa. However,
when a stress of less than 1MPa, which is much lower than that, is sometimes ap-
plied to the metal specimen, as shown in Fig. 3.1, such a layered pattern is formed
and the metal is deformed. This deformation is called slip and the line in Fig. 3.1
is called the slip line. Slip refers to the sliding of a material along a specific surface.
Although this phenomenon has been observed for a long time, explanations are rel-
atively recent. In Fig. 3.3(b), the separation of two planes are approximately two
atomic radii therefore, the shear strain is

γ ≃ a

2a
=

1

2

Without consideration of plasticity, we have

µ =
τ

γ

where µ is shear modulus and τ is the shear stress. The shear modulus of Mg is
17.2GPa, the shear stress at saddle point is

τ =
17.2

2
= 8.6GPa

Figure 3.1: Slip lines on magnesium crystal.
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Figure 3.2: Schematic view of slip lines. (a) side view (b) front view.

Figure 3.3: (a) Initial position of the atoms on silp plane. (b) At saddle point. (c)
Final position after shear by one atomic distance.
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Figure 3.4: Schematic representation of edge dislocation generation.

Experimentally, the shear stress to be applied for shear is 0.7MPa, which differs
by four order of magnitudes. We can imagine that something is going on there.
It doesn’t seem easy to just pass the saddle point, so I thought a lot about other
mechanisms.

3.2 Kinds of Dislocation

3.2.1 Edge dislocation and Screw Dislocation

The basic assumption to explain that phenomenon is that materials are not perfect.
There is a defect in it. Not all atomic planes are perfect, some atomic planes are
either partial or truncated. We will call this case dislocation from now on. With the
development of electron microscopy technology, this dislocation can also be observed
experimentally. This existence has been experimentally proven. In Fig.3.4(a), there
are nine atomic planes with no line defects in it. The cut plane (red line) is inserted
and all bonds are broken across the cut plane in Fig.3.4(b). When stress is applied to
direction by blue arrow, then four half atomic planes migrate to the right direction.
When half planes migrate by one atomic distance, the atomic plane is connected
again, however two half planes (plane 1 below half and plane 4 above half) are
remained as half planes. The slip plane is the extended plane of cut plane and the
slip region means that the atomic layers are partial or connected plane with two
different original numbering, such as 1-2 and 2-3 and so on. In no slip region, all
atomic planes have been intact. The edge dislocation is the boundary between slip
region and no slip region. The representation of edge dislocation in 3D is shown
in Fig. 3.5. The dislocation line is defined along edge of the extra half plane and
it is represented by ⊥ symbol. The magnitude of the plane slip is represented by
Burgers vector, b. Once we have the atomic circuit including edge dislocation in
Fig. 3.6, With the Start atom (S), then go down to 1D, 2D, 3D and 4D and then
move to right side and we have 4D1R to 4D3R. Move to the upside four times, then
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Figure 3.5: Atomic arrangement including edge dislocation.

Figure 3.6: Atomic arrangement including edge dislocation.

we have 3R and move two left side three times and the atom is final atom (F).
When there is no dislocation, S atom have to be same as F atom. If it is not same,
then the vector from S atom to F atom is the Burgers vector, b. For the case of
edge dislocation, the Burgers vector is perpendicular to the dislocation line. Please
be cautious that one have to rotate along counter-clockwise direction. When you
rotate along clockwise direction, Burgers vector is vector from F atom to S atom.
We found that for a edge dislocation,

b⊥t

where t is the direction vector for dislocation line. There is another form of dis-
location, which is a screw dislocation. In Fig. 3.7, even without a half plane, the
dislocation line and the Burgers vector are parallel, and it can be understood as
rotating at a certain angle with respect to the axis of rotation perpendicular to the
slip plane.

b ∥ t

3.2.2 Mixed dislocation

Typically, in real materials, we frequently encounter mixed dislocation, at point A
in Fig. 3.9 the dislocation is a screw dislocation and it becomes edge dislocation at
point B.

3.3 Dislocation(Vacancy) loop and Prismatic loop

There are cases where the slip region creates a closed space. There are two major
cases: a dislocation loop and a prismatic loop. Assume the Burgers vector indicates
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Figure 3.7: Schematic illustration of screw dislocation

Figure 3.8: Better representation of screw dislocation.
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Figure 3.9: Representation of mixed dislocation.

Figure 3.10: Schematic illustration of dislocation loop
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Figure 3.11: Schematic illustration of prismatic dislocation loop

Figure 3.12: Schematic illustration of vacancy loop

upside, dislocation line is the tangential line of the loop, therefore, it is combination
of edge and screw dislocations. When turned clockwise, when t precedes b, it is
called a positive edge, and when it follows, it is called a negative edge. If t and b
are parallel, the left hand screw, when the angle is 180◦, it is called a right hand
screw. A dislocation loop consists of negative edge, left hand screw, positive edge,
right hand screw. The another type of loop is a prismatic dislocation loop in Fig.
3.11, and it is a structure mainly found in metals such as Fe, which are mainly
irradiated with neutrons. As will be discussed in detail later, when neutrons are
irradiated, many defects out of their original site called self interstitial atoms and
vacancies are created, which sometimes form a partial plane or a vacancy cluster
between atomic planes in the form of a two-dimensional disk. At this time, Burgers
vector is perpendicular to the plane, and in this case, Burgers vector and dislocation
line are perpendicular to all regions of the loop. Therefore, the entire loop has the
edge dislocation. A vacancy loop in Fig. 3.12 is an example of prismatic loop and
we can easily find the location of edge dislocation in it.

3.4 Partial dislocation

The movement of dislocations along the slip plane is in fact achieved by movement
of atoms in the opposite direction. When looking at the movement of dislocation
along the (111) plane of FCC in Fig. 3.13, the direction of movement is indicated by
Burgers vector, however, sometimes, it is not easy because it requires large amount
of lattice distortion in this process. If a single unit dislocation break down into a
pair of partial dislocations, the vectors c and d are shown in Fig. 3.14. The Burgers

Figure 3.13: A total dislocation in a FCC lattice.
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Figure 3.14: Partial dislocation in a FCC lattice.

Figure 3.15: Stacking of atomic layers A, B and C

vector on (111) plane of FCC is
1

2
[110]

and two partial vectors are
1

6
[121]

1

6
[211]

We confirm that
1

2
[110] =

1

6
[121] +

1

6
[211]

The partial dislocation discussed above is called as Shockley partial. In the case
of FCC, in Fig. 3.15, it is a sequence of ABABAB ... layers where A is followed
by B and then A again. An atom that comes to B or C in the order in which A
comes is called a stacking fault. As shown in Fig 3.14, to generate Shockley partial,
generation of a stacking fault is inevitable. Therefore, the larger the stacking fault
energy (SFE), the less likely it is to generate a Shockley partial, but a perfect
dislocation. In the case of Shockley partial, cross slip does not occur because the
direction of dislocation is changed. This has a significant impact on the mechanical
properties of the material, as we will see later. As shown in Fig. 3.16, when half
plane present above part, since the atomic density is high, compressive strain field
presents. On the other hand, atomic arrangement is relatively loose, therefore,
tensile strain field presents.

Figure 3.16: Regions of compression (dark) and tension (colored) located around an
edge dislocation.
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Figure 3.17: (a) Two edge dislocations of the same sign and lying on the same slip
plane exert a repulsive force on each other; C and T denote compression and tensile
regions, respectively. (b) Edge dislocations of opposite sign and lying on the same
slip plane exert an attractive force on each other. Upon meeting, they annihilate
each other and leave a region of perfect crystal.

3.5 Stress field by a dislocation

Let’s see an qualitative explanation in Fig. 3.17. Edge dislocations with the same
sign repel each other. Repulsive force is applied because compressive strain zones
do not want to overlap each other and tensile strain zones do not want to be close
to each other. On the other hand, attractive force is applied to the compressive
strain zone and the tensile strain zone, and even when two edge dislocations with
different signs meet, the dislocation disappears while forming a perfect plane. This
is called dislocation annihilation. In order to quantitatively explain this interaction,
it is necessary to find the force acting by dislocation. Let’s take a look at this part.

3.5.1 Basic elasticity theory

The displacement of a point in a strained body from its position in the unstrained
state is represented by

u = [ux, uy, uz]

Then the strain is defined by

εxx =
∂ux

∂x
εyy =

∂uy

∂y
εzz =

∂uz

∂z

εyz = εzy =
1

2

(
∂uy

∂z
+

∂uz

∂y

)
εzx = εxz =

1

2

(
∂uz

∂x
+

∂ux

∂z

)
εxy = εyx =

1

2

(
∂ux

∂y
+

∂uy

∂x

)
With Lamé constant λ and µ,

σxx = 2µεxx + λ(εxx + εyy + εzz)

σyy = 2µεyy + λ(εxx + εyy + εzz)

σzz = 2µεzz + λ(εxx + εyy + εzz)

σxy = 2µεxy σyz = 2µεyz σzx = 2µεzx
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3.5.2 Mechanical Equilibrium

For deriving the differential equations of equilibrium one has to apply Newton’s
second law to a small rectangular volume element, δxδyδz, under externally imposed
forces F. Neglecting presence of body force for simplicity. Then the Newton’s second
law yield

m
∂2ux

∂t2
=

(
σxx +

∂σxx

∂x
δx− σxx

)
δyδz +

(
σxy +

∂σxy

∂y
δy − σxy

)
δxδz

+

(
σxz +

∂σxz

∂z
δz − σxz

)
δxδy

m
∂2uy

∂t2
=

(
σyy +

∂σy

∂y
δy − σyy

)
δxδz +

(
σyx +

∂σyx

∂x
δx− σyx

)
δyδz

+

(
σyz +

∂σyz

∂z
δz − σyz

)
δyδx

m
∂2uz

∂t2
=

(
σzz +

∂σzz

∂z
δz − σzz

)
δxδy +

(
σzx +

∂σzx

∂x
δx− σzx

)
δzδy

+

(
σzy +

∂σzy

∂y
δy − σzy

)
δzδx

Under the equilibrium,
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0

∂σyy

∂y
+

∂σyx

∂x
+

∂σyz

∂z
= 0

∂σzz

∂z
+

∂σzx

∂x
+

∂σzy

∂y
= 0

In short, we have
∂σij

∂j
= 0 (3.1)

which is called the equation of mechanical equilibrium.

3.5.3 Stress field in cylindrical coordinate

When describing the stress field of a dislocation, it is sometimes more convenient to
describe it in cylindrical coordinates.

σrr = σxx cos
2 θ + σyy sin

2 θ + 2σxy sin θ cos θ

σθθ = σxx sin
2 θ + σyy cos

2 θ − 2σxy sin θ cos θ

σrθ = (σyy − σxx) sin θ · cos θ + σxy(cos
2 θ − sin2 θ)

σzz = σzz

σrz = σxz cos θ + σyz sin θ

σθz = −σxz sin θ + σyz cos θ
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Figure 3.18: Stress field in cylindrical coordinate

Figure 3.19: (a) Screw dislocation AB formed in a crystal. (b) Elastic distortion
of a cylindrical tube simulating the distortion produced by the screw dislocation in
(a).
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3.5.4 Stress field of screw dislocation

We assume that there is no displacements in the x and y directions,

ux = uy = 0

uz =
bθ

2π
=

b

2π
arctan (y/x)

then we have
εxx = εyy = εzz = εxy = εyx = 0

Since
∂uz

∂x
=

b

2π
× 1

1 + (y/x)2
× −y

x2
= − b

2π

y

x2 + y2
= − b

2π

sin θ

r

∂uz

∂y
=

b

2π
× 1

1 + (y/x)2
× 1

x
=

b

2π

x

x2 + y2
=

b

2π

cos θ

r

Therefore,

εzx = εxz = − b

4π

y

x2 + y2
= − b

4π

sin θ

r

εzy = εyz =
b

4π

x

x2 + y2
=

b

4π

cos θ

r

With Hooke’s law,
σxx = σyy = σzz = σxy = σyx = 0

σzx = σxz = −µb

2π

y

x2 + y2
= −µb

2π

sin θ

r

σzy = σyz =
µb

2π

x

x2 + y2
=

µb

2π

cos θ

r

In the cylindrical coordinates, we have

σrz = σxz cos θ + σyz sin θ = 0

εrz = εxz cos θ + εyz sin θ = 0

σθz = −σxz sin θ + σyz cos θ =
µb

2πr

εθz = −εxz sin θ + εyz cos θ =
b

4πr

3.5.5 Stress field of edge dislocation

For edge dislocations, unlike screw dislocations, it is difficult to express displacement
in a simple way, so we will describe the stress field directly.

σxx = −Dy
3x2 + y2

(x2 + y2)2
σyy = Dy

x2 − y2

(x2 + y2)2
σzz = ν(σxx + σyy)

σxy = σyx = Dx
x2 − y2

(x2 + y2)2
σxz = σzx = σyz = σzy = 0

where

D =
µb

2π(1− ν)

The general trend is
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Figure 3.20: (a) Edge dislocation formed in a crystal. (b) Elastic distortion of a
cylindrical ring simulating the distortion produced by the edge dislocation in (a).

1. Above the edge (x = 0, y > 0), pure compression

2. Below the edge (x = 0, y < 0), pure tension

3. Along the slip plane (y = 0), pure shear

When b = [100], t = [001], we can represent the stress state as shown in Fig. 3.21.

3.5.6 Strain energy of a dislocation

Dislocation causes deformation of the lattice, which in turn generates extra energy,
which is called strain energy. The strain energy Etotal is divided into two parts, core
energy(Ecore) and elastic energy (Eel).

Etotal = Ecore + Eel

The core energy is not easy to calculate on a continuum scale and is usually calcu-
lated using quantum mechanics, etc. The evaluation of the core energy is beyond
scope of the lecture. The strain energy by a screw dislocation is can be obtained
by work done in displacing the faces of the cut LMNO by b in Figs. 3.19 and 3.20.
Since the strain energy is

dEel =
1

2
σijεijdV

in an elemental volume dV . In the cylindrical coordinate,

dV = 2πrdrdh

for unit axis length dh = 1, we have

dEel(screw) = 2πr × 1

2
dr
(
σθzεθz + σzθεzθ

)
= 4πrdrµ

(
εθz

)2
=

µb2

4πr
dr

proceed to

Eel(screw) =
µb2

4π

∫ R

r0

dr

r
=

µb2

4π
ln

(
R

r0

)
It is bit difficult to derive, but the result is rather simple and we have

Eel(edge) =
µb2

4π(1− ν)
ln

(
R

r0

)
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Figure 3.21: Stress state in the vicinity of a edge dislocation when b = [100],
t = [001]

Figure 3.22: An edge dislocation displaced x with stress σ12

Since
1− ν < 1

therefore, we can expect that elastic energy of edge dislocation is larger than that
of screw dislocation.

3.5.7 Force on dislocation: Peach-Koehler equation

The average displacement along x direction, ux in Fig. 3.22 is

ux =
xt

lt
bx

The external force generated by shear stress σxy is σxylt, the work for slip is

W = σxyltux = σxyxtbx = Fxtx
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Figure 3.23: Dislocation array when b = [b00] and t = [001]

where Fx is the force along x direction on the dislocation on unit length of disloca-
tion. Therefore, we have

Fx = σxybx

Given a dislocation line t and a Burgers vector b in general, finding the force can
be generalized with more geometrical considerations, and this is called the Peach-
Koehler equation. The force per unit length on a dislocation in the presence of
applied stress σij , we have

F = (σij · b)× t

where t is an unit vector. To describe in more detail

F =

∣∣∣∣∣∣
i j k
Gx Gy Gz

tx ty tz

∣∣∣∣∣∣
where

Gx = σxxbx + σxyby + σxzbz

Gy = σyxbx + σyyby + σyzbz

Gz = σzxbx + σzyby + σzzbz

For the case in Fig. 3.23, force per unit length applied on dislocation II by dislo-
cation I is

Gx = σxxb Gy = σyxb Gz = σzxb

then

F =

∣∣∣∣∣∣
i j k

σxxb σyxb σzxb
0 0 1

∣∣∣∣∣∣
therefore

Fx = σyxb Fy = −σxxb Fz = 0

Fx is the force in the glide direction and Fy is the force perpendicular to the glide
plane. When the case of dislocation II is negative edge, the sign of force have to be
reversed. Therefore, we have

Fx =
µbb′

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
=

µbb′

2π(1− ν)r
cos θ cos 2θ (3.2)
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Figure 3.24: Three stable configurations of two edge dislocations.

Figure 3.25: Plot of Fx with respect to Gbb′y/2π(1− ν). Assume that y = 1.

Fy =
µbb′

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
=

µbb′

2π(1− ν)r
sin θ

(
2 + cos 2θ

)
We can find the stable position for two edge dislocations force becomes 0 when

x = 0 y → ∞

Three stable configurations of two edge dislocations are shown in Fig. 3.24. The
force per unit length Fx, we have the plot in Fig. 3.25. In Fig. 3.26,

Fx = Fr cos θ − Fθ sin θ

Fy = Fr sin θ − Fθ cos θ

Therefore,

Fr = Fx cos θ + Fy sin θ =
µbb′

2π(1− ν)r

Fθ = Fy cos θ − Fx sin θ =
µbb′ sin 2θ

2π(1− ν)r

From Eq. 3.2, when bb′ > 0, when 0 < θ < π/4, Fx > 0, it means the dislocation
tends to move away. When π/4 < θ < π/2, Fx < 0, it means the dislocation tends
to converge. Therefore, the position θ = π/4 is the unstable point, because, even a
slight fluctuation causes it to deviate from its original position. On the other hand,
when π/2 < θ < 5π/4, Fx > 0, it means that the dislocation at π/4 < θ < 5π/4
tends to converge to θ = π/2, which means the point at θ = π/2 is the stable
position. The moving direction of the edge dislocation by the force exerted by
parallel edge dislocation at origin is visualized in Fig. 3.27.
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Figure 3.26: Force between two parallel edge dislocations.

Figure 3.27: The moving direction of the edge dislocation by the force exerted by
parallel edge dislocation at origin.

3.6 Interaction between Dislocations

A straight dislocation line can have a break in it in Fig.3.28:

1. A jog moves it out of the current slip plane. (→ to a parallel one)

2. A kink leaves the dislocation on the slip plane.

The Jog and the Kink can be considered as a defect in a dislocation line. Jogs and
Kinks can be produced by intersection of straight dislocations. The presence of a
jog in a dislocation line increases the energy of the crystal. The energy of a jog per
unit length is less than that for the dislocation (as this lies in the distorted region
near the core of the dislocation). This energy is about 0.5 − 1.0 eV(∼ 10−19J) for
metals. The energy of the jog can be derived by

Ejog = αGb21b2

where b1 is the Burgers vector of the dislocation and b2 is the length of the jog and
α is the constant somewhere between 0.5 to 1. When b2 is comparable to the 0.5b1
the energy is frequently assumed by

Ejog = 0.2Gb3 (3.3)

Figure 3.28: Schematic illustrations of jog and kink.
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Figure 3.29: Schematics of a dislocation moving through an array of obstacles in its
glide plane.

with omitting subscript. Since the energy of ordinary dislocation per unit length is
Gb2, the factor 0.2 in Eq. 3.3 arises from the much-reduced range of the stress field
due to the jog compared to that around an ordinary dislocation. When there are
miltiple jogs are in the system and their spacing is L, the work performed by the
stress is

W = Lb2
(
σcrit
s

)
jog

Then the critical stress to move the screw dislocation by forcing the jogs to climb is(
σcrit
s

)
jog

≃ 0.2
Gb

L

By similar logic, when a dislocation is impeded in its movement by an obstacle, the
amount of shear stress that must be applied to overcome the obstruction is given
by (

σcrit
s

)
jog

≃ 2
Gb

L
(3.4)


