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Kim-Kim-Suzuki model

In Kim-Kim-Suzuki(KKS) model, the free energy density f(c, ϕ),
where ϕ is phase-field to distinguish α and β phase.
c is the composition of the system which is mixture of α and β phases.
cα and cβ are compositions of α and β phase, respectively.
Concentrations and order parameter depend on position r and time t.
We implicitly represent it.
The free energy functional is

f(c, ϕ) = h(ϕ)fα
(
cα
)
+
[
1− h(ϕ)

]
fβ
(
cβ
)
+ wg(ϕ) (1)

The composition of the system is

c(r, t) = h(ϕ)cα(r, t) +
[
1− h(ϕ)

]
cβ(r, t) (2)

Under the thermodynamic equilibrium is assumed by

dfα
(
cα
)

dcα
=

dfβ
(
cβ
)

dcβ
(3)

Kunok (KHU) Phase-field model November 28, 2024 4 / 22



Kim-Kim-Suzuki model

The interpolation function h(ϕ) have to be satisfied

h(ϕ = 0) = 0 h(ϕ = 1) = 1

and
h′(ϕ = 0) = 0 h′(ϕ = 1) = 0

we can choose

h(ϕ) = ϕ3(10− 15ϕ+ 6ϕ2) or h(ϕ) = ϕ2(3− 2ϕ)

The double-well potential is

g(ϕ) = ϕ2(1− ϕ)2
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Governing equation using dilute solution approximation

Introduce the notation for convenience.

fc(c, ϕ) =
∂f(c, ϕ)

∂c
fϕ =

∂f(c, ϕ)

∂ϕ
fα
c

(
cα
)
=

dfα

dcα

fα
cc =

d2fα
(
cα
)

dc2α
fβ
cc =

d2fβ
(
cβ
)

dc2β
fcc =

∂2f
(
c, ϕ
)

∂c2

Two equations are given by

∂ϕ(r, t)
∂t

= Mϕ

(
ϵ2∇2ϕ− fϕ

)
(4)

∂c(r, t)
∂t

= ∇
(
Md∇fc

)
= ∇

(
D(ϕ)

fcc
∇fc

)
(5)
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Governing equation using dilute solution approximation

Take partial derivative with respect to c of Eq. 2,

1 = h(ϕ)
∂cα
∂c

+
[
1− h(ϕ)

]∂cβ
∂c

, (6)

Take partial derivative with respect to c of Eq. 3, we have

fα
cc

(
∂cα
∂c

)
= fβ

cc

(
∂cβ
∂c

)
proceed to

∂cβ
∂c

=
fα
cc

fβ
cc

(
∂cα
∂c

)
Plug it into Eq. 6,

∂cα
∂c

=
fβ
cc[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

(7)
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Governing equation using dilute solution approximation

Consistently,
∂cβ
∂c

=
fα
cc[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

(8)

By similar ways,

∂cα
∂ϕ

=
h′(ϕ)(cα − cβ)f

β
cc[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

(9)

∂cβ
∂ϕ

=
h′(ϕ)(cα − cβ)f

α
cc[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

(10)
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Governing equation using dilute solution approximation

Take partial derivative with respect to ϕ of Eq. 1, under equilibrium

dfα
(
cα
)

dcα
=

dfβ
(
cβ
)

dcβ
= µ̃

it have to be diffusion potential µ̃. We have

fϕ(c, ϕ) =
∂f(c, ϕ)

∂ϕ
+ h(ϕ)µ̃

∂cα
∂ϕ

+
[
1− h(ϕ)

]
µ̃
∂cβ
∂ϕ

= −h′(ϕ)
[
fα
(
cα
)
− fβ

(
cβ
)]

+ wg′(ϕ)

+ µ̃

[
h(ϕ)

∂cα
∂ϕ

+
[
1− h(ϕ)

]∂cβ
∂ϕ

]
︸ ︷︷ ︸

h′(ϕ)
(
cα−cβ

)
= −h′(ϕ)

[
fα
(
cα
)
− fβ

(
cβ
)
− µ̃

(
cα − cβ

)]
+ wg′(ϕ)

(11)
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Governing equation using dilute solution approximation

Take the derivative with respect to c of Eq. 3,

fcc(c, ϕ) = fα
cc

(
∂cα
∂c

)
=

fα
ccf

β
cc[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

Take the derivative with respect to ϕ of Eq. 3,

fcϕ(c, ϕ) = fα
cc

(
∂cα
∂ϕ

)
=

fα
ccf

β
cch′(ϕ)(cα − cβ)[

1− h(ϕ)
]
fα
cc + h(ϕ)fβ

cc

Therefore, we have

fcϕ(c, ϕ)

fcc(c, ϕ)
= h′(ϕ)(cα − cβ) (12)
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Governing equation using dilute solution approximation

Take partial derivative with respect to c of Eq. 1 with fα
c = fβ

c = µ̃,
we have the diffusion potential µ̃.

fc(c, ϕ) = h(ϕ)µ̃
∂cα
∂c

+
[
1− h(ϕ)

]
µ̃
∂cβ
∂c

=
h(ϕ)µ̃fβ

cc +
[
1− h(ϕ)

]
µ̃fα

cc[
1− h(ϕ)

]
fα
cc + h(ϕ)fβ

cc

= µ̃ = fβ
c = fα

c
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Governing equations for KKS equation

With Eqs. 5 and 12,

∂c(r, t)
∂t

= ∇ · D(ϕ)

fcc
∇fc

= ∇ · D(ϕ)

fcc

(
fcc∇c+ fcϕ∇ϕ

)
= ∇ ·D(ϕ)∇c+∇ ·

D(ϕ)fcϕ
fcc

∇ϕ

= ∇ ·D(ϕ)∇c+∇ ·D(ϕ)h′(ϕ)
(
cα − cβ

)
∇ϕ

The first term in RHS indicates the diffusion by concentration gradient
and second term indicates solute redistribution at the interface.
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Governing equations for KKS equation

With Eq. 2.

∂c(r, t)
∂t

= ∇ ·D(ϕ)∇
[
h(ϕ)cα +

(
1− h(ϕ)

)
cβ

]
+∇ ·D(ϕ)h′(ϕ)

(
cα − cβ)∇ϕ

= ∇ ·D(ϕ)
[
h(ϕ)∇cα +

(
1− h(ϕ)

)
∇cβ

]
The change in solute concentration at a point, for example in a binary
system, is determined by the sum of the solute changes in the two
phases.
With Eqs. 4 and 11,

1

Mϕ

∂ϕ

∂t
= ε2∇2ϕ− wg′(ϕ) +

[
fα(cα)− fβ(cβ)−

(
cα − cβ

)
µ̃
]
h′(ϕ)︸ ︷︷ ︸

thermodynamic driving force

Kunok (KHU) Phase-field model November 28, 2024 13 / 22



Equilibrium concentration of KKS model

In binary system, in one-dimensional system three conditions have to
be satisfied under the equilibrium.

d

dx

(
Md

dµ̃

dx

)
= 0

ε2
d2ϕ

dx2
− wg′(ϕ) + h′(ϕ)

[
fα
(
ceα
)
− fβ

(
ceβ
)
−
(
ceα − ceβ

)
µ̃e
]
= 0 (13)

µ̃ =
dfβ
(
cβ
)

dcβ
=

dfα
(
cα
)

dcα

Integrate the second equation with respect to x,

ε2

2

(
dϕ

dx

)2
∣∣∣∣∣
+∞

−∞

−wg(ϕ)

∣∣∣∣∣
0

1

+h(ϕ)

∣∣∣∣∣
0

1

[
fα
(
ceα
)
−fβ

(
ceβ
)
−
(
ceα−ceβ

)
µ̃e
]
= 0
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Equilibrium concentration of KKS model

First and second terms are gone, we have

fα
(
ceα
)
− fβ

(
ceβ
)
−
(
ceα − ceβ

)
µ̃e = 0 (14)

it is

µ̃e = fα
c = fβ

c =
fα
(
ceα
)
− fβ

(
ceβ
)

ceα − ceβ

which converges to the common tangent condition, which is given by
thermodynamic equilibrium condition.
The concentration within the interface is given by

c̃e = h(ϕ)ceβ +
(
1− h(ϕ)

)
ceα
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Interface width of KKS model

When Eq. 14 is satisfied, Eq. 13 becomes under the equilibrium

ε2
d2ϕ

dx2
− wg′(ϕ) = 0 (15)

which differs from WBM model. In KKS model, fϕ(c, ϕ) term
disappears. The solution of Eq. 15 is

dx = − ε√
2wg(ϕ)

dϕ

When the order parameter varies from ϕa to ϕb at interface, the
interface width 2ξ is

2ξ =
ε√
2w

∫ ϕb

ϕa

dϕ√
g(ϕ)
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Interface width of KKS model

Let
g(ϕ) = ϕ2(1− ϕ)2

then we have the solution

ϕ(x) =
1

2

[
1− tanh

(√
w√
2ε

x

)]

When
ϕa = 0.1 ϕb = 0.9

we have
2ξ =

4ε√
2w

ln 3
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Interface energy of KKS model

For KKS model,

Gxs

A
=

∫ ∞

−∞

[
h(ϕ)fβ

(
ceβ
)
+
(
1− h(ϕ)

)
fα
(
ceα
)
+ wg(ϕ)

+

(
ε2

2

dϕ

dx

)2
]
dx−

∫ 0

−∞
fβ
(
ceβ
)
dx−

∫ ∞

0
fα
(
ceα
)
dx

The number of excessive solute atoms per area is

Γxs

A
=

1

vm

[∫ ∞

−∞
c̃(ϕ)dx−

∫ 0

−∞
ceβdx−

∫ ∞

0
ceαdx

]

=
1

vm

[∫ ∞

−∞

(
h(ϕ)ceβ +

(
1− h(ϕ)

)
ceα

)
dx

−
∫ 0

−∞
ceβdx−

∫ ∞

0
ceαdx

]
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Interface width of KKS model

Proceed to

vm
Γxs

A
µ̃e =

[∫ ∞

−∞

(
h(ϕ)ceβ +

(
1− h(ϕ)

)
ceα

)
dx

−
∫ 0

−∞
ceβdx−

∫ ∞

0
ceαdx

]
fα
(
ceα
)
− fβ

(
ceβ
)

ceα − ceβ

Then the interface energy is

σ = ε2
∫ ∞

−∞

(
dϕ

dx

)2

dx = −ε2
∫ 1

0

(
dϕ

dx

)
dϕ = ε

√
2w

∫ 1

0

√
g(ϕ)dϕ

(16)
Compare to WBM model, W (ϕ) term disappears!
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Gibbs-Thompson effect under the equilibrium

When spherical R β phase is under the equilibrium on the α phase,

µ̃e,R =
dfα
(
ce,Rα

)
dc

=
dfβ
(
ce,Rβ

)
dc

When we transfer the origin of coordinates from the center of
curvature to the center of interface ϕ = 1/2, we have

ε2

R+ r

dϕ

dr
+ ε2

d2ϕ

dr2
− wg′(ϕ) + h′(ϕ)

(
fα
(
ce,Rα

)
− fβ

(
ce,Rβ

)
−
(
ce,Rα − ce,Rβ

)
µ̃e,R

)
= 0
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Gibbs-Thompson effect under the equilibrium

Integrate over whole space, second and third terms are vanished,

ε2
∫ ∞

−∞

1

R+ r

(
dϕ

dr

)2

dr =
ε2

R

∫ ∞

−∞

1

1 + r/R

(
dϕ

dr

)2

dr

=
ε2

R

∫ ∞

−∞

(
1− r

R

)(
dϕ

dr

)2

dr +O
(
δ22
)

=
ε2

R

∫ ∞

−∞

(
dϕ

dr

)2

dr − ε2

R2

∫ ∞

−∞
r

(
dϕ

dr

)2

dr +O
(
δ22
)

If g(ϕ) is symmetric with respect to ϕ = 1/2, dϕ/dr is odd function
with respect to r, therefore, r(dϕ/dr)2 is an even function, therefore,
the second term is gone.
The first integration of RHS becomes σ/R.
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Gibbs-Thompson effect under the equilibrium

Neglecting δ22 term and more,

σ

R
= fα

(
ce,Rα

)
− fβ

(
ce,Rβ

)
−
(
ce,Rα − ce,Rβ

)
µ̃e,R

which converges to result of sharp interface analysis.
KKS model reproduce Gibbs-Thomson effect with conditions

1 The curvature radius of interface R is the distance from the origin of
curvature to ϕ = 1/2

2 g(ϕ) is symmetric with respect to ϕ = 1/2.
3 The interface have to be narrow enough.
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