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Kim-Kim-Suzuki model

In Kim-Kim-Suzuki(KKS) model, the free energy density f(c, ¢),
where ¢ is phase-field to distinguish v and 3 phase.

@ cis the composition of the system which is mixture of o and 3 phases.

® ¢, and cg are compositions of v and 3 phase, respectively.

@ Concentrations and order parameter depend on position r and time t.

We implicitly represent it.
The free energy functional is
Fe,0) = h(@)f*(ca) + [1 = 1(&)] 7 (o) +wg(e) (1)

The composition of the system is

c(r, t) = h(¢)ca(r) t) =+ [1 - h(¢)] cﬁ(rv t) (2)

Under the thermodynamic equilibrium is assumed by

df*(ca) _ df"(cs)

dcy dcg (3&”
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Kim-Kim-Suzuki model

@ The interpolation function h(¢) have to be satisfied

and

we can choose

h(¢) = ¢°(10 — 15¢ + 6¢%) or h(¢d) = ¢*(3 - 2¢)

@ The double-well potential is
9(¢) = ¢*(1 - ¢)?
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Governing equation using dilute solution approximation

@ Introduce the notation for convenience.

 0f(c,0) Cf(e,d) g A
fele, @) = Oc fo= 1)) fe (Ca) " de,
o Pfca) L5 dBf(cs) . Pf(c9)
fCC—W fCC_W fcc—T
@ Two equations are given by
8¢(r7 t) _ M¢ (62v2¢ . f(;S) (4)
ot
oc(r, D
LU IR V< = Vfc) (5)

NE

Kunok (KHU) Phase-field model November 28, 2024 6 /22



Governing equation using dilute solution approximation

@ Take partial derivative with respect to ¢ of Eq. 2,

o
dc

@ Take partial derivative with respect to ¢ of Eq. 3, we have

o <aca > fcc (605 )
Ocg  f& [ Ocq
de f!i( >

9ca _ i (7)
o [1— ()] fo + h(e) 2 30

Ocg

1= h(6) 52 + [1 - h(9)] S2, (6)

proceed to

o Plug it into Eq. 6,
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Governing equation using dilute solution approximation

o Consistently,

des _ e .
O [1- ()] fe+ h(¢)fl ©®)
@ By similar ways,
Oco __ W(D)lca—co)fh o
06 [1—h(@)]fa+n(9)fe
Doy W(@)ea ) o
06 [1—h(e)] fo + h(@)fo (0
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Governing equation using dilute solution approximation

@ Take partial derivative with respect to ¢ of Eq. 1, under equilibrium

df*(ca) _ df”(cp)
de, dcg

=p
it have to be diffusion potential 1. We have

0 Ocq _0
Fote,6) = é; 2 W@y + [1=h@)]iy]

= (@] £(ca) = 17 (c5)| +wd ()

hé) 2 4 1 h(g)] ‘”] (11)

R R 3¢

h () (ca705)
= —H(&)[ £ (ca) = 17 (c8) = ica — c5)| + g (@)

~~
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Governing equation using dilute solution approximation

@ Take the derivative with respect to ¢ of Eq. 3,

&ﬂ: o fh
de [1— h(e)] &+ h(9) f&

fcc(cv ¢) = fg:(

@ Take the derivative with respect to ¢ of Eq. 3,

%ﬁ: Jétfeeh!(9) (ca — c3)
96 ) [1—h(@)]fe+ho)fl

frole,d) = (

@ Therefore, we have

fc¢(ca¢) 7 e — ¢
fcc(07 ¢) =h (¢)( « ,8) (12)
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Governing equation using dilute solution approximation

o Take partial derivative with respect to ¢ of Eq. 1 with f& = fcﬂ = [,
we have the diffusion potential fi.

fele:8) = h(O)EE + [1~ h(g)] A5
_ W@afe+ [L-h@JAfE s .
- r@)jaho)fs T
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Governing equations for KKS equation

e With Egs. 5 and 12,

oc(r, t) D(¢)

o~V Tpe Ve
=V D‘f-(d)) (fccvc + fc¢>v¢)
=V -D(¢)Vc+ V- D(jf)f“ﬁw

=V -D(¢)Vc+ V- D(¢)R (¢)(ca — )V

@ The first term in RHS indicates the diffusion by concentration gradient
and second term indicates solute redistribution at the interface.
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Governing equations for KKS equation

e With Eq. 2.

dc(r,t)
ot

=V D(9)V[hl@)ea + (1= h(6))es]
+ - D@ (6)(ca — ca) Vo
=V D(6) [H(8)Vea + (1 - h(6)) Ves]

@ The change in solute concentration at a point, for example in a binary
system, is determined by the sum of the solute changes in the two

phases.
e With Egs. 4 and 11,
1 a / « ~ /
T 3y = S0 = w0+ [17(e0) = £7(e5) = (e~ )]0

thermodynamic driving force i
A J
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Equilibrium concentration of KKS model

@ In binary system, in one-dimensional system three conditions have to
be satisfied under the equilibrium.

d dfi

2 mEE) =

dac( ddx) 0
2 d%¢

L0 g (6)+ W@ () - () — (= 8)i] =0 (13)

__ df?(cp) _ df*(ca)
H= deg  deg

o Integrate the second equation with respect to z,

0

(&)= 17(65) - (5 -5)i] =0

1

9 d 9| F00
% <di> —wg ()
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Equilibrium concentration of KKS model

@ First and second terms are gone, we have
Fo(ee) = 17(ch) = (& = B =0 (14)
it is
(&) = 17(<h)

e __ €
e — ¢

ﬂe:fca:fc =

which converges to the common tangent condition, which is given by
thermodynamic equilibrium condition.

@ The concentration within the interface is given by

& = h(6)c§ + (1 - h(6))<S,
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Interface width of KKS model

@ When Eq. 14 is satisfied, Eq. 13 becomes under the equilibrium

d%¢

2

€ dez wy'(¢) =0 (15)
which differs from WBM model. In KKS model, fy(c, ¢) term
disappears. The solution of Eq. 15 is

de = ———=_dg

V2wg(9)

@ When the order parameter varies from ¢, to ¢y at interface, the
interface width 2¢ is

e @b de

%= V2w Jo, /9(9)
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Interface width of KKS model

o Let

9(¢) = $*(1 - ¢)°

then we have the solution

s 41— (22

e When
¢, = 0.1 op = 0.9
we have 4
€
26 =——1In3
¢ V2w
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Interface energy of KKS model

o For KKS model,

G; S / h [h<¢> FA(c§) + (1= h(e)) £2(c5) + wg(e)

—0o0
2 2 0 (o)
e do
— dr — 5 a
+<2d$)]l’/fcﬁ of
@ The number of excessive solute atoms per area is

T:;[/_Z (gzb)d:n—/ cﬁdw—/ooo ]

1 [/Oo <h(¢)c% +(1- h(¢))cg)da;

Um, —c0

0 oo
—/ c%dx—/ czdx]
—00 0 NE
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Interface width of KKS model

@ Proceed to

v B = [ / O; (h@)cs + (1= h(9))5 ) da
— /(;O cpdr — /Ooo czdw] £ (Ci‘; : f; (Ceﬂ)

@ Then the interface energy is

© /d 2 L sd 1
0252/_00 (ﬁ) dx:—€2/0 <df>d¢:5\/ﬂ/o Vo(d)do
(16)
e Compare to WBM model, W (¢) term disappears!
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Gibbs-Thompson effect under the equilibrium

@ When spherical R 8 phase is under the equilibrium on the « phase,

g (™) A
H o de - de

@ When we transfer the origin of coordinates from the center of
curvature to the center of interface ¢ = 1/2, we have

2
S0 2Tl (o) 4 W) (1) - ()

— (CZZR C;R),u ) —0
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Gibbs-Thompson effect under the equilibrium

@ Integrate over whole space, second and third terms are vanished,
o [ 1 @ 1 dqﬁ
5/_ Rtr\dr R 1+r/R i
do
). ( (&Yoo
€ g2 [ [d¢ 9
_R/_Oo <d7") drfﬁ —oor<dr) dr+0(52)

e If g(¢) is symmetric with respect to ¢ = 1/2, d¢/dr is odd function
with respect to r, therefore, r(d¢/dr)? is an even function, therefore,

the second term is gone.
@ The first integration of RHS becomes o/R.
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Gibbs-Thompson effect under the equilibrium

o Neglecting 05 term and more,
g — fa (CZ’R) _ f,@ (C;’R) . (CZZR _ C;’R),[Le’R

which converges to result of sharp interface analysis.
o KKS model reproduce Gibbs-Thomson effect with conditions

© The curvature radius of interface R is the distance from the origin of
curvature to ¢ = 1/2

@ g(¢) is symmetric with respect to ¢ = 1/2.

© The interface have to be narrow enough.
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